Abstract
Dimethyl sulfoxide (DMSO), an efficient transdermal enhancer, is proposed to alter the skin barrier by, at least partially, disturbing the lipid phase of the stratum corneum (SC). We have investigated, using differential scanning calorimetry and vibrational microspectroscopy, the effect of DMSO on the phase behavior of a lipid mixture formed by N-palmitoyl- d- erythro-sphingosine, deuterated palmitic acid, and cholesterol, mimicking the SC lipid phase. Our results reveal that DMSO favors the disordering of the lipid acyl chains. Moreover, the effect of DMSO is strongly concentration dependent and this dependence is reminiscent of that describing the DMSO transdermal enhancement. DMSO-induced fluidification affects primarily the fatty acid in the mixture. Therefore, it is proposed that the molecular mechanism of the transdermal transport enhancement caused by DMSO is associated with its H-bonding properties; its presence alters the interfacial H-bond network involving the fatty acid molecules and consequently the cohesive lipid packing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.