Abstract

The availability of fully functional human hepatocytes is critical for progress in human hepatocyte transplantation and the development of bioartificial livers and in vitro liver systems. However, the cell isolation process impairs the hepatocyte status and determines the number of viable cells that can be obtained. This study aimed to evaluate the effects of using dimethyl sulfoxide (DMSO) and melatonin in the human hepatocyte isolation protocol. Human hepatocytes were isolated from liver pieces resected from 10 patients undergoing partial hepatectomy. Each piece was dissected into 2 equally sized pieces and randomized, in 5 of 10 isolations, to perfusion with 1% DMSO-containing perfusion buffer or buffer also containing 5 m<smlcap>M</smlcap> melatonin using the 2-step collagenase perfusion technique (experiment 1), and in the other 5 isolations to standard perfusion or perfusion including 1% DMSO (experiment 2). Tissues perfused with DMSO yielded 70.6% more viable hepatocytes per gram of tissue (p = 0.076), with a 26.1% greater albumin production (p < 0.05) than those perfused with control buffer. Melatonin did not significantly affect (p > 0.05) any of the studied parameters, but cell viability, dehydrogenase activity, albumin production, urea secretion, and 7-ethoxycoumarin O-deethylase activity were slightly higher in cells isolated with melatonin-containing perfusion buffer compared to those isolated with DMSO. In conclusion, addition of 1% DMSO to the hepatocyte isolation protocol could improve the availability and functionality of hepatocytes for transplantation, but further studies are needed to clarify the mechanisms involved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call