Abstract

Steady-state Stern−Volmer analysis is uniformly used to assess in solution the efficiency of a sensing molecule for a particular analyte. We use a combination of steady-state Stern−Volmer analysis and time-resolved photoluminescence (TRPL) to determine the underlying mechanisms by which fluorescent sensing materials comprised of fluorene-based chromophores sense nitro-based explosive analytes. The ability of two first-generation dendrimers comprised of bifluorene-containing chromophores to sense explosive analytes was compared with the chemically related polymer poly(9,9-di-n-octylfluoren-2,7-diyl). One dendrimer was planar with a single chromophore with the second having four chromophores tetrahedrally arranged around an adamantyl center. All the materials had high photoluminescence quantum yields of around 90% and were able to sense explosive analytes via quenching of their fluorescence. The three-dimensional dendrimer based upon the adamantyl core was found to have the highest Stern−Volmer constants for all the analytes tested with the planar dendrimer also proving to be on average superior to the polymer. The TRPL measurements showed that sensing occurred by a combination of collisional and static quenching with the proportion of collisional quenching being based on the number of aromatic units in the analyte. Steady-state fluorescence polarization anisotropy measurements of the three materials revealed that for the three-dimensional dendrimer an exciton can migrate between all of the chromophores, meaning that an exciton formed on one chromophore of the dendrimer can be quenched by an analyte interacting with a second chromophore. This gives rise to the potential for sensing response amplification and explains its superior performance to the planar dendrimer and polymer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.