Abstract

The current trend towards a zero-emission transport sector has increased the interest of the scientific community and the industry in fuel cell (FC) technologies in the past few years. Previous studies have focused on passenger car analyses to differentiate them from the current battery electric vehicle (BEV) alternative. However, deploying these technologies may be even more critical for the transportation-produced global emissions if they are used in different applications, such as heavy-duty commercial vehicles. This study uses a differential control strategy to find the best fuel-cell performance for a heavy-duty vehicle application. In addition, and as a differentiation point from other studies in the literature, this article exploits the modularity of the heavy-duty truck sector to implement a design with optimal fuel cell system (FCS) sizing and control dynamics distribution in terms of durability and H2 consumption. Low dynamics could increase 471% in durability just for a 3.8% increase in H2 consumption. When using a multi-FCS with non-equal power FCS, a high dynamics behavior of the small FCS significantly improves the durability for a small consumption penalty (less than 0.7%). The obtained data has proven that the combination of these two design strategies shows an improved vehicle performance that could lead to environmental impact and cost reduction, which is significant in the current development stage of fuel cell vehicle (FCV) technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call