Abstract

Wing-Wing Interaction (WWI), such as the Clap and Fling Motion (CFM), occurs when two wings are flapping close together, improving performance. We intend to design a hovering Flapping Micro Aerial Vehicle (FMAV) which makes use of WWI. We investigate the effects of flexibility, kinematic motions, and two- to six-wing flapping configurations on the FMAV through numerical simulations. Results show that a rigid spanwise and flexible chordwise wing produces the highest lift with minimum power. The smoothly varying sinusoidal motion, which is visually similar to the CFM, produces similar lift in comparison to the CFM, while having lower peak power requirement. Lastly, lift produced by each wing of the two-, four-, six-wing configurations is approximately equal. Hence more wings generate higher total lift force, but at the expense of higher drag and power requirement. These results will be beneficial in the understanding of the underlying aerodynamics of WWI, and in improving the performance of our FMAV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.