Abstract

ABSTRACTThe electrospun polyamide 6 (PA6) membranes are treated with different methods. The rough surfaces with different protuberances size and the fiber diameter are prepared by wet, dry heat, wet heat, and ethanol treatments under relaxation, and the formation mechanisms are analyzed. A relative stable structure of PA6 membrane is also prepared by ethanol treatment under tension, and its structure is as same as the untreated membrane. The dynamic water contact angles (WCAs) of the treated membranes are measured. The starting WCA of the membrane with wet heat treatment under relaxation is 90.95°, which is larger than those of wet, dry heat, and ethanol treatments under relaxation. The effects of surface morphologies with different treatments on wettability are analyzed. For obtaining hydrophobicity, the membrane with wet heat treatment under relaxation was coated by polyvinylidene fluoride (PVDF). The WCA of the membrane increases to 127.1° after coating. From another point of view, the WCA of the PVDF/treated PA6 membrane is much larger than that of the pure casting PVDF membrane, which means the rough surface of the treated PA6 membrane can improve the hydrophobicity of the PVDF membrane. Furthermore, the membrane is endowed with superhydrophobicity (WCA of 153.5°) after being coated by SiO2/PVDF due to the multilevel structured surface roughness. It is a relative low cost and convenient operation method to prepare the superhydrophobic material. The results provide a novel preparation method of the superhydrophobic material and a treatment method of the electrospun PA6 membrane to obtain a stable structure. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48804.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.