Abstract

Statement of problemNonthermal argon plasma may increase the surface energy of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) dental ceramics. However, studies that evaluated the effect of increased plasma treatment times on the bond strength of resin cements to Y-TZP ceramics are lacking. PurposeThe purpose of this in vitro study was to evaluate the effect of different nonthermal argon plasma (NTAP) treatment times on the surface energy and bond strength of a self-adhesive resin cement to Y-TZP ceramic. Material and methodsForty-eighty Y-TZP plates were divided into 2 groups (n=24): as-sintered (AS) and airborne-particle abrasion (APA) with 50-μm Al2O3, which were subdivided into 4 groups (n=6) according to the time of NTAP treatment: 0, 20, 60, and 120 seconds. The surface energy was evaluated with a goniometer. Forty Y-TZP blocks submitted to the same surface treatments (8 groups; n=5) were cemented to composite resin blocks, using a self-adhesive resin cement. After storage in distilled water at 37°C for 24 hours, the Y-TZP-composite resin blocks were cut into beams and submitted to a microtensile bond strength (μTBS) test. Data were analyzed using 2-way ANOVA and the Tukey honestly significant differences test (α=.05). ResultsTreatment with NTAP increased the surface energy for AS and APA groups (P<.05). For both groups, the μTBS was as follows: 0 seconds < 20 seconds < 60 seconds = 120 seconds (P<.05). Only after 120 seconds of NTAP treatment was the μTBS of APA higher than that of AS (P<.05). ConclusionsTreatment with NTAP improved the surface energy and increased the μTBS of self-adhesive resin cement to Y-TZP ceramic, with higher times of plasma treatment resulting in higher bond strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call