Abstract

This paper proposes an approach to analyse comprehend the effect of different uncertain ground impedance parameters on bipedal walking. A dynamic model of a rimless wheel in contact with an unpredictable visco-elastic terrain is presented. The mathematical model of the rimless wheel as it makes contact with an uneven ground has been developed based on Lagrangian dynamics. The uncertain ground impedance parameters induce structural visco-elasticity which is represented by a spring and damper pair in the horizontal direction and another in the vertical direction. A numerical simulation has been performed to investigate the behaviour of the proposed dynamic mathematical model. The results describe the effect of the interplay among the visco-elastic parameters at the ground-leg contact point of a legged walker and the emerging properties of interaction dynamics of walking on different impedance parameters. The results of simulation trials highlight the importance of the above interplay in the area of bipedal humanoid walking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.