Abstract

Ceramics are widely applied in dentistry owing to their excellent mechanical and physical attributes. The most popular ceramics are Lava™, KaVo Everest, and Cercon. However, it is unclear whether or not a different surface treatment along with low-temperature aging and mechanical loading (ML) affects the physical properties of computer-aided design (CAD)/computer-aided manufacturing (CAM)-machined yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramic. The objective of this research was to assess the impact of various surface treatments as air-particle abrasion, ML, low-temperature degradation (LTD), and their cumulative effects on biaxial flexural properties of Y-TZP. Totally, 50 specimens were fabricated by CAD-CAM machining from Cercon® and divided into five groups following different surface treatments as control (C), air-particle abrasion (Si), ML, LTD, and cumulative treatment (CT) group. Results were investigated by two-way analysis of variance (ANOVA) and Tukey honest significant difference (HSD) test. The highest biaxial flexural strength was observed in the Si group (950.2 ± 126.7 MPa), followed by the LTD group (861.3 ± 166.8 MPa), CT group (851.2 ± 126.5 MPa), and the least with ML (820 ± 110 MPa). A significant difference was observed in the two-way ANOVA test. X-ray diffraction (XRD) analysis showed that the control group consists of 100% tetragonal zirconia and the maximum amount of monoclinic phase was obtained after LTD. No negative effect on biaxial flexural strength was observed; indeed, it increases the biaxial strength. Hence, these surface treatments can be done in routine clinical practice to improve the performance of ceramic restoration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call