Abstract

The effects of support materials on catalytic performance were investigated in catalytic removal of toluene. And the Mn–Ce binary oxides as active components were supported on ZrO2, SiO2, γ-Al2O3 and TiO2 support materials. Many techniques, including X-ray diffraction (XRD), Brunauer–Emmett–Teller method (BET), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR) and NH3-temperature-programmed desorption (NH3-TPD), were used to characterize physicochemical properties. Among the different catalysts, the MnCe/ZrO2 catalyst with the lowest specific surface area (39.7 m2/g) shows the best catalytic activity. In terms of toluene conversion, the activity order is as follows: MnCe/ZrO2 > MnCe/TiO2 ≈ MnCe/SiO2 > MnCe/Al2O3. The better performance of MnCe/ZrO2 should be attributed to the low-temperature reducibility, and abundant surface species (Mn4+ and lattice oxygen). And XPS and TPR results reveal that more surface abundant Mn and Ce elements generate good interaction in MnCe/ZrO2. The weak interaction between metal oxide and support also boosts the dispersion and complete reduction of MnCe oxides at low temperature. In addition, the in-situ DRIFTS results clarify that the carbonate species are main intermediates in MnCe/ZrO2 sample during surface reaction process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.