Abstract

Carbon nanotubes (CNTs) have received interest as an attractive reinforcing agent metal matrix composites regarded as an increase to mechanical properties of the final product. Aluminum/carbon nanotubes (Al/CNTs) nanocomposites were observed with different raw material at the optimized experimental condition. In this study, Al-based CNTs composites were three different samples, including un-milled Al, un-milled Al with CNTs, and milled Al with CNTs nanocomposites in the presence of additional CNTs with various experimental conditions while using a traditional ball mill (TBM). The particle morphology and CNT dispersions of milled composites were respectively analysed by scanning electron microscopy (SEM) and field emission scanning electron microscopy (FESEM), and the mechanical properties of the fabricated composites were tested. In each sample, CNTs were well dispersed on the surface of Al powder at different experimental conditions for milling in a TBM. The Al/CNTs nanocomposites were processed by compacting, sintering and rolling process. The Vickers hardness was used to characterize the mechanical properties. The hardness of Al/CNTs nanocomposites that were fabricated with milled Al with CNT was higher than the reached to in the nanocomposites prepared with the use of un-milled Al with CNT nanocomposites. Therefore, the discrete element method (DEM) simulation was used to complete quantitative analysis. The flow pattern, impact force, and energy at various experimental conditions are considered. The results of the simulations are compared with experimental data.

Highlights

  • Iijima discovered the carbon nanotubes (CNTs) in 1991 [1], and are they widely used for the fabrication of nanocomposite materials with metallic particles to improve the chemical, physical, and mechanical properties of the final products [2,3]

  • The mechanical alloying process has two kinds of the process, when considering one is the cold-working of the powders that lead to a reduction in ductility and fracturing of the particles, other cold-welding of particles, which trends to increase the particle size

  • scanning electron microscopy (SEM) results show that the particle morphology of Al powder was slightly increased with increasing rotation speed and milling time

Read more

Summary

Introduction

Iijima discovered the carbon nanotubes (CNTs) in 1991 [1], and are they widely used for the fabrication of nanocomposite materials with metallic particles to improve the chemical, physical, and mechanical properties of the final products [2,3]. Choi et al [4] studied the effect of structural and morphology of CNTs on the mechanical alloying characteristics of CNT-aluminum (Al) nanocomposite. They have studied Al powders with single-, double-, and multi-walled CNTs nanocomposites being prepared by ball mill. We fabricate Al with CNTs nanocomposites with better the mechanical properties while using three different raw materials (un‐milled Al without CNT, un‐milled Al with CNTs, while using three different raw materials (un-milled Al without CNT, un-milled Al with CNTs, specially specially milled Al with CNT) by a traditional ball mill (TBM) while using a DEM simulation. Estimate detailed results that are impact force and energy from actual experiments

Experimental
Results and Discussion
FESEM micrographs with CNT
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.