Abstract

The consumption of microgreens has increased due to their having higher levels of bioactive compounds and mineral nutrients than mature plants. The lighting conditions during the cultivation of microgreens, if optimally selected, can have a positive effect by further increasing their nutritional value. Thus, our study aimed to determine the changes in mineral nutrients contents of Brassicaceae microgreens depending on different blue–red (B:R) light ratios in light-emitting diode (LED) lighting and to evaluate their growth and nutritional value according to different indexes. Experiments were performed in controlled environment growth chambers at IH LRCAF, 2020. Microgreens of mustard (Brassica juncea ‘Red Lace’) and kale (Brassica napus ‘Red Russian’) were grown hydroponically under different B:R light ratios: 0%B:100%R, 10%B:90%R, 25%B:75%R, 50%B:50%R, 75%B:25%R, and 100%B:0%R. A 220 μmol m−2 s−1 total photon flux density (TPFD), 18 h photoperiod, 21/17 ± 2 °C temperature and 60% ± 5% relative humidity in the growth chamber were maintained during cultivation. We observed that an increasing percentage of blue light in the LED illumination spectrum during growth was associated with reduced elongation in the microgreens of both species and had a positive effect on the accumulation of mostly macro- and micronutrients. However, different B:R light ratios indicate a species-dependent response to changes in growth parameters such as leaf area, fresh and dry mass, and optical leaf indexes such as for chlorophyll, flavonol, anthocyanin, and carotenoid reflectance.

Highlights

  • The results from assaying mineral content show that having a higher percentage of blue light (B50–B100) in the illumination spectrum during cultivation resulted in a higher content of mineral nutrients in mustard microgreens, with the exception of nitrogen (N) (Tables 1 and 2)

  • Our study showed that the bioconcentration factor (BCF) was higher than 1, meaning that the accumulation of mineral nutrients from a solution to roots was effective in both microgreens, which could be caused by an early growth phase and rapid growth

  • This study showed that a higher percentage of blue light in blue–red lighting led to a higher reduction of nitrates in microgreens

Read more

Summary

Introduction

In the past few decades, people have become more interested in their health and green eating and have increased their consumption of vegetables, which are sources of various health-beneficial compounds, including mineral elements. Humans require certain mineral nutrients in large amounts, while others are necessary in trace quantities, and higher concentrations can be detrimental [1,2]. Macronutrients are essential to humans as cofactors of vitamins and enzymes, are vital for electrical signaling in nerves, and are necessary for optimal teeth and bone health. Various micronutrients serve as cofactors for numerous enzymes that are necessary for different metabolic processes and antioxidant activity, in addition to being essential for the immune system [3,4,5]. One way to increase mineral concentration in plants is through biofortification

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call