Abstract

Ni/CeZrO 2 catalysts promoted by Ag, Fe, Pt and Pd were investigated for methane autothermal reforming and partial oxidation of methane. The catalysts properties were determined by BET surface area, X-ray diffraction (XRD), H 2 temperature-programmed reduction (TPR), temperature-programmed desorption of CO 2 (CO 2-TPD) and UV–vis diffuse reflectance spectroscopy (DRS). Nickel dispersions were evaluated using a model reaction, the dehydrogenation of cyclohexane. BET surface area results showed that the catalysts prepared by successive impregnation presented lower surface area which favored the smaller nickel dispersion. XRD analysis showed the formation of a ceria–zirconia solid solution. TPR experiments revealed that the addition of Pt and Pd as promoters increased the reducibility of nickel. CO 2-TPD results indicated that the AgNiCZ catalysts presented the best redox properties among all catalysts. The autothermal reforming of methane showed that, among different promoters, the sample modified with silver, AgNiCZ, presented higher methane conversion and better stability during the reaction. These results are related to the good reducibility and to the higher redox capacity observed in TPR and CO 2-TPD analysis. Samples prepared by successive impregnation technique resulted in a smaller catalytic activity. For partial oxidation of methane, just as happened in autothermal reforming, AgNiCZ also presented the best performance during the 24 h of reaction and the addition of silver by successive impregnation resulted in a lower methane conversion, probably, due to the smaller metal dispersion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call