Abstract

AISI 410 martensitic stainless steel (MSS) samples were conventionally heat treated in diverse quenching environments to obtain three different microstructures: fine ferrite, fine and coarse martensite. Furthermore, laser surface treatment (LST) was done by pulsed neodymium-doped yttrium aluminum garnet (Nd:YAG) laser to compare the effect of short-term diffusion on the hardness of the different microstructures. The microstructure and microhardness of the samples were investigated by means of an optical microscope and Vickers microhardness tester respectively. Moreover, finite element simulation was done using ABAQUS finite element software to predict cooling curves and temperature histories at different depths of workpiece and to calculate the depth of fully hardened and partially hardened material. A comparison between theoretical and experimental results showed a good conformity and that LST is an effective approach to improve the hardness of the ferrite, despite the coarse and fine martensite phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call