Abstract

The effect of nanoparticle with different size on a superconductor is interesting because the size of the coherence length, penetration depth, and the magnetic flux in a superconductor is in the nanometer range. In this paper, we report the effects of different nano-sized MgO (20, 40, and 100 nm) addition on YBa2Cu3O7-δ(MgO)x for x = 0, 0.1, and 0.2 wt.%. X-ray diffraction patterns indicated a single YBa2Cu3O7 (YBCO) phase where the peaks were shifted to larger angles in the 20- and 40-nm MgO-added samples indicating induced stress of first order in the structure. The electrical resistance versus temperature was measured using the four-probe method. The transition temperature, Tc, for the pure YBCO showed Tc = 90 K and was suppressed to 78–80 K for the 20- and 40-nm MgO-added samples. AC susceptibility (χ = χ′ + iχ″) measurements showed a shift in the peak temperature, Tp, of the imaginary susceptibility χ″ towards lower temperatures for 20-nm MgO-added samples but increased with larger MgO (100 nm). This work showed that smaller nano-sized MgO suppressed the superconducting properties of YBCO more compared with the larger MgO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call