Abstract

Scavenger decapping enzymes (DcpS) are involved in eukaryotic mRNA degradation process. They catalyze the cleavage of residual cap structure m7GpppN and/or short capped oligonucleotides resulting from exosom–mediated the 3′ to 5′ digestion. For the specific cap recognition and efficient degradation by DcpS, the positive charge at N7 position of guanine moiety is required. Here we examine the role the N7 substitution within the cap structure on the interactions with DcpS (human, Caenorhabditis elegans and Ascaris suum) comparing the hydrolysis rates of dinucleotide cap analogs (m7GpppG, et7GpppG, but7GpppG, bn7GpppG) and the binding affinities of hydrolysis products (m7GMP, et7GMP, but7GMP, bn7GMP). Our results show the conformational flexibility of the region within DcpS cap-binding pocket involved in the interaction with N7 substituted guanine, which enables accommodation of substrates with differently sized N7 substituents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.