Abstract
Present research study was conducted to formulate kidney-targeted allopurinol (AO)-loaded chitosan nanoparticles (ANPs) for management of hyperuricemic related nephrolithiasis. Different molecular weights of chitosan were used for fabricating ANP formulation by adopting modified ionotropic gelation method. The prepared batches were than evaluated for particle size analysis, entrapment efficiency, transmission electron microscopy, X-ray diffraction, Differential Scanning Calorimetry, in vitro release and in vivo animal study. The in vivo study depicted that post 2 h of administration of different formulations and pure drug; ANPs prepared from low molecular weight chitosan showed maximum concentration of AO in kidney signifying successful kidney targeting of drug (25.92 fold) whereas no or very less amount of AO was seen in other animal groups. Effectiveness (p < 0.01) of formulation in management of hyperuricemia-associated nephrolithiasis was also evaluated via estimation of urine pH and serum and urine uric acid levels of mice. Further histological study was also performed on kidney samples which again affirmed these results. Present investigation demonstrated that ANPs prepared from low MW chitosan depicted maximum kidney-targeting ability that might be due to its specific uptake by the kidneys as well as its higher solubility than other two polymers, which results in enhanced release rate from the formulation and also offers an efficient strategy for the management of hyperuricemic nephrolithiasis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.