Abstract

This article addresses the effects of six mold materials used for obtaining thin-walled compacted graphite iron castings with a wall thickness of 3 mm. During this research, the following materials were analyzed: fine silica sand, coarse silica sand, cerabeads, molohite and also insulated materials in the shape of microspheres, including low-density alumina/silica ceramic sand. Granulometric and SEM observations indicate that the sand matrix used in these studies differs in terms of size, homogeneity and shape. This study shows that molds made with insulating sands (microspheres) possess both: thermal conductivity and material mold ability to absorb heat, on average to be more than five times lower compared to those of silica sand. In addition to that, the resultant peak of heat transfer coefficient at the mold/metal interface for microspheres is more than four times lower in comparison with fine silica sand. This is accompanied by a significant decrease in the cooling rate of metal in the mold cavity which promotes the development of compacted graphite in thin-walled castings as well as ferrite fractions in their microstructure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call