Abstract

Calcareous sand, as a blow-fill or construction material, is widely used in island and reef construction projects in marine environments after treatment. When microorganism-induced mineralization is used to strengthen calcareous sand, salinity and other conditions in the marine environment will adversely affect microorganisms or their mineralization process. For this reason, the two environmental conditions created by deionized water and simulated seawater were introduced to explore their effects on the growth and urease activity of Sporosarcina pasteurii. Then, the changes in the permeability and mechanical strength of calcareous sand under different mineralization methods were compared by one-dimensional sand column tests. Finally, the reinforcement mechanism was compared and analyzed based on the results of scanning electron microscopy and X-ray diffraction tests. The results show that Sporosarcina pasteurii can induce carbonate and phosphate precipitation and mineralization to strengthen calcareous sand in simulated seawater. The mineralized products greatly reduce the permeability of calcareous sand and significantly improve the mechanical strength by wrapping calcareous sand particles, filling water seepage channels and cementing adjacent particles. The reinforcement effect of carbonate mineralization is better than that of phosphate mineralization, but phosphate mineralization has less impact on the environment during the treatment process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call