Abstract

A range of intracellular NADH availability was achieved by combining external and genetic strategies. The effect of these manipulations on the distribution of metabolites in Escherichia coli was assessed in minimal and complex medium under anoxic conditions. Our in vivo system to increase intracellular NADH availability expressed a heterologous NAD+-dependent formate dehydrogenase (FDH) from Candida boidinii in E. coli. The heterologous FDH pathway converted 1 mol formate into 1 mol NADH and carbon dioxide, in contrast to the native FDH where cofactor involvement was not present. Previously, we found that this NADH regeneration system doubled the maximum yield of NADH from 2 mol to 4 mol NADH/mol glucose consumed. In the current study, we found that yields of greater than 4 mol NADH were achieved when carbon sources more reduced than glucose were combined with our in vivo NADH regeneration system. This paper demonstrates experimentally that different levels of NADH availability can be achieved by combining the strategies of feeding the cells with carbon sources which have different oxidation states and regenerating NADH through the heterologous FDH pathway. The general trend of the data is substantially similar for minimal and complex media. The NADH availability obtained positively correlates with the proportion of reduced by-products in the final culture. The maximum theoretical yield for ethanol is obtained from glucose and sorbitol in strains overexpressing the heterologous FDH pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call