Abstract

BackgroundInfections in hemodialysis (HD) patients lead to high morbidity and mortality rates and are associated with early cardiovascular mortality, possibly related to chronic inflammation. Intravenous (IV) iron is widely administered to HD patients and has been associated with increased oxidative stress and dysfunctional cellular immunity. The purpose of this study was to examine the effect of three commercially available IV iron preparations on intracellular reactive oxygen species generation and lymphocyte subpopulation survival.MethodsPeripheral blood mononuclear cells (PBMC) were isolated from healthy donor buffy coat. PBMC were cultured and incubated with 100 μg/mL of sodium ferric gluconate (SFG), iron sucrose (IS) or iron dextran (ID) for 24 hours. Cells were then probed for reactive oxygen species (ROS) with dichlorofluorescein-diacetate. In separate studies, isolated PBMCs were incubated with the 25, 50 or 100 μg/mL iron concentrations for 72 hours and then stained with fluorescein conjugated monoclonal antibodies for lymphocyte subpopulation identification. Untreated PBMCs at 24 hours and 72 hours served as controls for each experiment.ResultsAll three IV iron preparations induced time dependent increases in intracellular ROS with SFG and IS having a greater maximal effect than ID. The CD4+ lymphocytes were most affected by IV iron exposure, with statistically significant reduction in survival after incubation with all three doses (10, 25 and 100 μg/mL) of SFG, IS and ID.ConclusionThese data indicate IV iron products induce differential deleterious effects on CD4+ and CD16+ human lymphocytes cell populations that may be mediated by intracellular reactive oxygen species generation. Further studies are warranted to determine the potential clinical relevance of these findings.

Highlights

  • Infections in hemodialysis (HD) patients lead to high morbidity and mortality rates and are associated with early cardiovascular mortality, possibly related to chronic inflammation

  • Infections in HD patients are associated with increased cardiovascular mortality, which may be related to immune system dysfunction resulting in recurrent infections that contribute to chronic inflammation and accelerated atherosclerosis [1]

  • We have previously shown that the smaller molecular weight iron-carbohydrate complexes are associated with greater appearance of free, or non-transferrin-bound, iron in vivo when compared to the larger molecular weight iron-carbohydrate complex, iron dextran [10]

Read more

Summary

Introduction

Infections in hemodialysis (HD) patients lead to high morbidity and mortality rates and are associated with early cardiovascular mortality, possibly related to chronic inflammation. Infections in HD patients are associated with increased cardiovascular mortality, which may be related to immune system dysfunction resulting in recurrent infections that contribute to chronic inflammation and accelerated atherosclerosis [1]. Cellular dysfunction of both innate (e.g. T cells and macrophages) and adaptive (e.g. B cells) immunity is well described in patients with chronic kidney disease (CKD) and may be attributable to many factors including accumulated uremic toxin burden, bio-incompatible. Intravenous (IV) iron compounds, including iron sucrose and iron dextran, which are widely administered to HD patients, have been associated with depressed neutrophil intracellular killing capacity, reduced polymorphonuclear cell hydrogen peroxide production and impaired phagocytic activity [4,5]. We have previously shown that the smaller molecular weight iron-carbohydrate complexes (sodium ferric gluconate and iron sucrose) are associated with greater appearance of free, or non-transferrin-bound, iron in vivo when compared to the larger molecular weight iron-carbohydrate complex, iron dextran [10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.