Abstract

The formation of ice crystals will have adverse effects on aquatic products, and the key to ensure the long-term preservation and better quality preservations of the product is to evaluate the intercellular ice crystal formation to find suitable refrigeration conditions and cryoprotectants. The ice crystal formation was successfully captured by using an inverted microscope cryomicroscopic system equipped with a low-temperature stage, the ice crystals formed under different freezing methods between tuna muscle cells were observed directly, the deformation degree of muscle tissue pores during crystallization was evaluated, and the effect of freeze-thaw times on tuna samples was analyzed. The effects of the use of cryoprotectant such as cellobiose and carboxylated cellulose nanofibers on ice-growth inhibition were investigated, and the reliability of the ice crystal observation results was further verified by the determination of physical properties. The results showed that carboxylated cellulose nanofibers had the best ice-growth inhibition effect, they prevented about 50% cell deformation compared with the control group, and also reduced the minimum size of ice crystal formation. In addition, the addition of cellobiose and sodium tripolyphosphate gave the ice crystals a more uniform size and roundness. The experiment proposed a stable and clear observation method for the process of intercellular ice crystal formation, and the accuracy of the observation method was further verified by some physical indicators. This may help in the selection of suitable measurement methods to directly observe ice crystal formation behavior and screen cryoprotectants. © 2024 Society of Chemical Industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.