Abstract
The current study aimed to produce rootstock material through micropropagation by developing efficient regeneration and Agrobacterium-mediated transformation protocols for three high quality commercial tomato hybrids (Felina, Siena and Don Jose) to overexpress the GmGSTU4 gene from Glycine max L. previously shown to enhance antioxidant activity. We investigated the plant growth regulators zeatin (Z) and 3-idoleacetic acid (IAA) to determine their best combination for an efficient regeneration protocol for each hybrid. The highest regeneration efficiency was observed in Felina (94.4%) with 1.0 mg/l Z and 0.1 mg/l IAA. In contrast, Don Jose (92.5%) and Siena (83.3%) performed better with 0.5 mg/l Z and 0.1 mg/l IAA. The three hybrids did not differ in micropropagation index, however, Felina showed the highest number of in vitro rooted and in vivo acclimatized plants. Factors such as the age of explant, days in pre- and co-culture and the concentrations of acetosyringone and thiamine on Agrobacterium-mediated genetic transformation were assessed. The transformation indices were 37.04% for the Felina, 13.8% for Siena and 8.33% for Don Jose. We conclude that targeted genotype-specific regeneration protocols will provide an efficient and cost effective genetic transformation system for rootstock production and further incorporation into micropropagation and transgrafting systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.