Abstract

Gallium nitride (GaN)/porous silicon (PSi) film was prepared using a pulsed laser deposition method and 1064 nm Nd: YAG laser for optoelectronic applications and a series of Psi substrates were fabricated using a photoelectrochemical etching method assisted by laser at different etching times for 2.5–15 min at 2.5 min intervals. X-ray diffraction, room-temperature photoluminescence, atomic force microscopy and field emission scanning electron microscopy images, and electrical characteristics in the prepared GaN on the Psi film were investigated. The optimum Psi substrate was obtained under the following conditions: 10 min, 10 mA/cm2, and 24% hydrofluoric acid. The substrate exhibited two highly cubic crystalline structures at (200) and (400) orientations and yellow visible band photoluminescence, and homogeneous pores formed over the entire surface. The pores had steep oval shapes and were accompanied by small dark pores that appeared topographically and morphologically. The GaN/Psi film fabricated through PLD exhibited a high and hexagonal crystallographic texture in the (002) plane. Spectroscopic properties results revealed that the photoluminescence emission of the deposited nano-GaN films was in the ultraviolet band (374 nm) related to GaN material and in the near-infrared band (730 nm) related to the Psi substrate. The topographical and morphological results of the GaN films confirmed that the deposited film contained spherical grains with an average diameter of 51.8 nm and surface roughness of 4.8 nm. The GaN/Psi surface showed a cauliflower-like morphology, and the built-in voltage decreased from 3.4 to 2.7 eV after deposition. The fabricated GaN/Psi film exhibited good electrical characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.