Abstract

This paper presents the results of experimental investigations on the durability of glass-fiber-reinforced polymer (GFRP) pultruded profiles made of unsaturated polyester (UP) and vinylester (VE) resins commonly used in civil engineering. The water absorption, tensile properties, and microstructures of GFRP profiles exposed to several typical accelerated aging environments (e.g., deionized water, salt water, salt fog, and combined hygrothermal cycles) for 12 months were investigated. Moreover, a sustained loading factor was included in the test to reflect the behavior of the GFRP profiles in real structures. A normalization approach based on the controlled specimens was used to assess the effectiveness and relevance of the accelerated exposure. The results indicated that the maximum moisture absorption of both UP and VE GFRP profiles was immersed in deionized water, where the masses increased by 1.03 and 0.53%, respectively, leading to the maximum degradation of tensile strength (24.03%) of UP GFRP profile immersion in deionized water after 360 days of aging. However, the tensile modulus was more sensitive to high temperatures and has the maximum degradation (47.03%) after hygrothermal cycles. Moreover, VE GFRP profiles show superior humidity and temperature endurance. Furthermore, the sustained loading exacerbated the degradation of tensile properties slightly under the same conditions. Finally, by incorporating the cumulative damage caused by the sustained loading and a time-dependent factor into a residual strength model, a revised model was proposed to describe the tensile strength loss of pultruded UP GFRP profiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.