Abstract

Probiotics and prebiotics together work synergistically as synbiotics and confer various health benefits. Many studies on synbiotic foods only focus on the survival of probiotics but fail to evaluate their functional properties. The impact on functional properties should be explored to better understand its therapeutic efficacy. In this work, probiotics (Lactiplantibacillus plantarum NCIM 2083) were encapsulated with prebiotics (fructooligosaccharide + whey protein + maltodextrin) using spray-drying (SD), freeze-drying (FD), spray-freeze-drying (SFD), and refractance window-drying (RWD) techniques. Aggregation, intestinal adhesion, antagonistic activity, and bile salt hydrolase (BSH) activity of probiotics were studied before and after the encapsulation process. The SFD probiotics showed better aggregation ability (79% at 24-h incubation), on par with free cells (FC) (81% at 24-h incubation). The co-aggregation ability of encapsulated probiotics has drastic variations with each pathogenic strain. The adhesion ability of probiotics in chicken intestinal mucus was assessed by the crystal violet method, indicating no significant variations between FC and SFD probiotics. Also, encapsulated probiotics exhibit antagonistic activity (zone of inhibition in mm) against gut pathogens E. coli (11.33 to 17.34), S. faecalis (8.83 to 15.32), L. monocytogenes (13.67 to 18), S. boydii (12.17 to 15.5), and S. typhi (2.17 to 6.86). Overall, these studies confirm the significance and impact of various drying techniques on the functionality of encapsulated probiotics in synbiotic powders. KEY POINTS: • Understanding the relevance of processing effects on the functionality of probiotics. • Spray-freeze-dried probiotics showed superior functional properties. • The encapsulation process had no significant impact on bile salt hydrolase activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call