Abstract
The substrate deposited on the workpiece is used by surface coating for the achievement of various properties in terms of hardness, smoothness, tear or wear etc But various methods such as electro-plating, conversion coating or several, are less effective because of costly machine involvement, complexity during operation, complexity during work-surface installation, specific (high/low) temperatures and thick coating. To achieve better coating among all, a layer of the modified composite coated surface using Copper (Cu), Molybdenum disulfide (MoS2) and Hexagonal Boron Nitride (HBN) with the help of an Electrical Discharge Machine (EDM) with reverse polarity is formed. In this process, the effect of two variable parameters current and composition (powder mixing ratio) of Cu, MoS2 and HBN with a 50% duty factor on the thickness of the deposited layer is observed. During the deposition process, each green compact electrode is formed by mixing the powdered material in a mortar for approximately 2.5 h and after processing in a hot press moulding machine. The deposited layer of the coating has also been analyzed using FESEM, XRD and tribological properties, where the highest deposition or thickness of the coating has been achieved at a powder mixing ratio of 20/40/40 to Cu/HBN/MoS2 with a current of 10 A at the same duty factor. Overall, better coating with controllable thickness can be achieved by using EDC, which can be helpful in automobiles or other industries where metal-to-metal friction causes performance loss.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.