Abstract

The microstructure and tensile properties of TiB2particles reinforced A356 composite materials at different cooling rates are investigated. Experimental results show that the composition of the alloy solidification ,eutectic silicon content , morphology and size have undergone significant changes while the cooling rate increased: On one hand, α-phase grains significantly reduced, by a 50 μm average grain size refinement to 1~5μm with the evolution from coarse dendritic to rosette dendritic, or even spherical evolution; On the other hand, eutectic Si content increases, and diameter, aspect ratio also showed a decreasing trend, while the circularity is gradually increasing. Meanwhile, with the increasing of cooling rate, the particle distribution of TiB2/A356 particle reinforced composite materials can be optimized. Particle aggregation is reduced, as a result TiB2particles’ reinforcement is more obvious, and the tensile fracture shows the obvious characteristics of ductile fracture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.