Abstract

The aim was to evaluate, in vitro, the influence of different computer-aided design/computer-aided manufacturing (CAD/CAM) materials (IPS e.max CAD, Vita Enamic, and Lava Ultimate) and thicknesses (0.6 mm and 1.5 mm) on the fracture resistance of occlusal veneers. Sixty human third molars were prepared to simulate advanced erosion of the occlusal surface, and the teeth were randomly divided into six experimental groups (n=10) according to the material and thickness used to build the veneers. Ten sound teeth formed the control group. The veneers were adhesively luted and submitted to mechanical cyclic loading (1 million cycles at 200-N load). The fracture resistance test was performed in a universal testing machine. The failures were classified as "reparable" and "irreparable." According to two-way analysis of variance and the Tukey test, the interaction (material × thickness) was significant ( p=0.013). The highest fracture resistance was obtained for IPS e.max CAD at a 1.5-mm thickness (4995 N) and was significantly higher compared to the other experimental groups ( p<0.05). The lowest fracture resistance was obtained for Vita Enamic at 0.6 mm (2973 N), although this resistance was not significantly different from those for IPS e.max CAD at 0.6 mm (3067 N), Lava Ultimate at 0.6 mm (3384 N), Vita Enamic at 1.5 mm (3540 N), and Lava Ultimate at 1.5 mm (3584 N) ( p>0.05). The experimental groups did not differ significantly from the sound teeth (3991 N) ( p>0.05). The failures were predominantly repairable. The occlusal veneers of IPS e.max CAD, Vita Enamic, and Lava Ultimate, with thicknesses of 0.6 mm and 1.5 mm, obtained fracture resistances similar to those associated with sound teeth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call