Abstract

Detailed hydrogen–air chemical reaction mechanisms were coupled with the three-dimensional grids of an experimental hydrogen internal combustion engine (HICE) to establish a computational fluid dynamics (CFD) combustion model based on the CONVERGE software. The effects of different combustion modes on the combustion and emission characteristics of HICE under low load were studied. The simulation results showed that, with the increase in excess hydrogen, the equivalent combustion and excessive hydrogen combustion modes with medium-cooled exhaust gas recirculation (EGR) dilution could improve the intensity of the in-cylinder combustion of HICE, increase the peak values of pressure and temperature in the cylinder, and then improve the indicated thermal efficiency of HICE under low load. However, larger excessive hydrogen combustion could weaken the improvement in performance; therefore, the performance of HICE could be comprehensively improved by the adoption of excessive hydrogen combustion with a fuel–air ratio below 1.2 under low load. The obtained conclusions indicate the research disadvantages in the power and emission performances of HICE under low load, and they are of great significance for the performance optimization of HICE. Furthermore, a control strategy was proposed to improve the stability of HICE under low load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.