Abstract

A series of carbazole-based beta-diketone derivatives and their europium(III) ternary complexes Eu(N-Cx)(3)phen were designed and synthesized, where N-Cx denotes carbazole-based beta-diketonates with different alkyl substituents at N-position of the carbazole ring and phen is 1,10-phenethroline. Thermogravimetric analysis (TGA) shows that the decomposition temperature of the complexes is over 360 degrees C. UV-visible absorption spectroscopy, photoluminescence (PL), and the luminescence quantum yield of the Eu(III) complexes were measured and compared with each other, and the effect of different substituted-alkyls at N-position in the carbazole ring on the photoluminescence was discussed in details, indicating there exists a competition between the absorption capacity and the energy transfer efficiency for the complexes when the structure of the substituted-alkyls changes. The triplet state energy levels of the beta-diketonate ligands in the complexes are higher than that of the lowest excited level of Eu(3+) ion, (5)D(0), so the photoluminescence mechanism of the Eu(III) complexes was proposed as a ligand-sensitized luminescence process. Red LEDs were fabricated by precoating the complexes onto 395 nm emitting InGaN chips. All the results show that this series of Eu(III) complexes is a promising candidate as a red component in fabrication of NUV-based white LEDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.