Abstract

The development of an efficient protocol for successful hairy root induction by Agrobacterium rhizogenes is the key step toward an in vitro culturing method for the mass production of secondary metabolites. The selection of an effective Agrobacterium strain for the production of hairy roots is highly plant species dependent and must be determined empirically. Therefore, our goal was to investigate the transformation efficiency of different A. rhizogenes strains for the induction of transgenic hairy roots in Fagopyrum tataricum ‘Hokkai T10’ cultivar; to determine the expression levels of the polypropanoid biosynthetic pathway genes, such as ftpAL, FtC4H, Ft4CL, FrCHS, FrCH1, FrF3H, FtFLS1, FtFLS2, FtF3, H1, FtF3′H2, FtANS, and FtDFR; and to quantify the in vitro synthesis of phenolic compounds and anthocyanins. Among different strains, R1000 was the most promising candidate for hairy root stimulation because it induced the highest growth rate, root number, root length, transformation efficiency, and total anthocyanin and rutin content. The R1000, 15834, and A4 strains provided higher transcript levels for most metabolic pathway genes for the synthesis of rutin (22.31, 15.48, and 13.04 μg/mg DW, respectively), cyanidin 3-O-glucoside (800, 750, and 650 μg/g DW, respectively), and cyanidin 3-O-rutinoside (2410, 1530, and 1170 μg/g DW, respectively). A suitable A. rhizogenes strain could play a vital role in the fast growth of the bulk amount of hairy roots and secondary metabolites. Overall, R1000 was the most promising strain for hairy root induction in buckwheat.

Highlights

  • Fagopyrum tataricum (Gaertn) is commonly known as tartary buckwheat

  • Mature seeds of tartary buckwheat were treated with different strains of A. rhizogenes to develop the hairy root culture

  • Primary results confirmed that the induction of hairy roots in tartary buckwheat is strain-specific because different A. rhizogenes strains exhibited varied infection efficiency patterns, hairy roots formation rates, and hairy root lengths

Read more

Summary

Introduction

Fagopyrum tataricum (Gaertn) is commonly known as tartary buckwheat. The plant has received increased attention due to the presence of significant amounts of pharmacologically important phenolic compounds, such as quercetin-3-glycoside, kaempferol-3-glycoside, chlorogenic acid, iso-orientin, orientin, rutin, vitexin, and quercitrin (Lee et al, 2014). It contains dietary fibers, proteins, starch, polyunsaturated fatty acids, and vitamin B and C complexes (Bonafaccia et al, 2003). Phenolic compounds, such as rutin and anthocyanins, that have been identified in buckwheat showed better in vitro antioxidant activity and in vitro pharmacological functions, such as cholesterol reduction, tumor inhibition, anti-hypertension, and control of diabetes and carcinogenesis (Kayashita et al, 1997; Chan, 2003; Kawa et al, 2003; Ishii et al, 2008)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call