Abstract

Branched poly(propylenimine) (PPI) provides an alternative to the prototypical amine polymer, commercially available branched poly(ethylenimine) (PEI), in composite adsorbents for CO2 capture. Herein, we investigate the synthesis of PPI via cationic ring opening polymerization of azetidine using various acid initiators (HBr, HClO4, HCl, CH3SO3H) and polymerization times, impacting the molecular weight and CO2 sorption behavior. The polymerization kinetics and the amine distribution (i.e., primary:secondary:tertiary ratios) are monitored with 1H NMR during polymerization, and a basic ion-exchange resin is used to neutralize charged amine centers and to remove unreacted acid. The polymers are impregnated into the model porous oxide support, mesoporous silica SBA-15, and the CO2 capacities under both simulated ambient air and flue gas conditions are elucidated. In parallel, the oxidative stability of the PPI-based sorbents is assessed and compared with the prototypical PEI sorbents. Sorbents with 30 wt % pol...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.