Abstract

Diethylether has previously been shown to inhibit several pathways of drug metabolism, including conjugation of paracetamol in isolated rat hepatocytes. Since overall paracetamol conjugation consists of pathways of different subcellular localization (cytosolar sulphation and microsomal glucuronidation) the response of both pathways to diethylether was tested. The elimination of paracetamol (160 mumol/l, initial concentration) and the formation of paracetamol sulphate and glucuronide were measured (high-performance liquid chromatography) in suspensions of isolated rat hepatocytes from fasted and fed animals over 1 h in the absence and presence of diethylether (30 mmol/l). Approximately 90% of the paracetamol elimination was by sulphation and nearly 10% by glucuronidation both in the controls and in the presence of ether. The overall disposition of paracetamol and the formation of sulphate were both reduced by about 50% in the presence of ether compared to the controls while the formation of glucuronide was reduced by 70%. The results were not influenced by the nutritional state of the animals before sacrifice. It is concluded that the inhibitory effect of ether on total paracetamol metabolism was mainly caused by reduced sulphation. Since microsomal glucuronidation was also inhibited by ether, both cytosolar and microsomal enzyme systems were sensitive to diethylether.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.