Abstract

Zinc is one of the essential micronutrients that can be obtained via water and diet in aquatic animals to meet their physiological needs. The present study was designed to understand the effect of the supplementation of zinc nanoparticles (Zn-NPs) in mitigating abiotic and biotic stress in Pangasius hypophthalmus. Two zinc nanoparticle-incorporated diets with 10 and 20mg/kg nanoparticles and a control without zinc nanoparticles were formulated. To study the effect of formulated feeds on stress tolerance, fish were exposed to sublethal dose (4ppm) of Pb (lead) and temperature at 34°C. Two hundred and seventy-three fish were randomly distributed into seven treatment groups in triplicates, namely a control group (no Zn-NPs and no Pb and temperature exposure, Ctr/Ctr), control diet fed and exposed to Pb (Ctr/Pb), control diet fed and concurrently exposed to Pb and temperature (Pb-T/Ctr), and Zn-NPs 10 and 20mg/kg diet with or without stressors (Zn-NPs 10mg/kg, Zn-NPs 20mg/kg, Pb-T/Zn-NPs 10mg/kg, Pb-T/Zn-NPs 20mg/kg). The effect of Zn-NPs on growth performance, stress biomarkers, biochemical and immunological responses, and survival of P. hypophthalmus following challenge with pathogenic bacteria were evaluated. The growth performance was noticeably (p < 0.01) enhanced, and anti-oxidative stress (catalase, superoxide dismutase, and glutathione-s-transferase) significantly reduced in the Zn-NPs supplemented groups. Similarly, immunological parameters such as total protein, albumin, globulin, and A/G ratio significantly improved, and stress biomarkers such as blood glucose, cortisol, and HSP 70 were reduced in Zn-NPs supplemented groups. Overall, the results suggest that supplementation of dietary Zn-NPs with less concentration in the diet has a definitive role in the mitigation of abiotic and biotic stress in P. hypophthalmus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call