Abstract
Se, an essential biological trace element, is required for fish growth. However, the underlying mechanisms remain unclear. Protein deposition in muscle is an important determinant for fish growth. This study was conducted on juvenile rainbow trout (Oncorhynchus mykiss) to explore the nutritional effects of Se on protein deposition in fish muscle by analysing the postprandial dynamics of both protein synthesis and protein degradation. Trout were fed a basal diet supplemented with or without 4 mg/kg Se (as Se yeast), which has been previously demonstrated as the optimal supplemental level for rainbow trout growth. After 6 weeks of feeding, dietary Se supplementation exerted no influence on fish feed intake, whereas it increased fish growth rate, feed efficiency, protein retention rate and muscle protein content. Results of postprandial dynamics (within 24 h after feeding) of protein synthesis and degradation in trout muscle showed that dietary Se supplementation led to a persistently hyperactivated target of rapamycin complex 1 pathway and the suppressive expression of numerous genes related to the ubiquitin-proteasome system and the autophagy-lysosome system after the feeding. However, the ubiquitinated proteins and microtubule-associated light chain 3B (LC3)-II:LC3-I ratio, biomarkers for ubiquitination and autophagy activities, respectively, exhibited no significant differences among the fish fed different experimental diets throughout the whole postprandial period. Overall, this study demonstrated a promoting effect of nutritional level of dietary Se on protein deposition in fish muscle by accelerating postprandial protein synthesis. These results provide important insights about the regulatory role of dietary Se in fish growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.