Abstract

We set out to determine whether probiotic addition would improve larval development in the false percula clownfish Amphiprion ocellaris and to determine what molecular responses could be observed in the larvae following probiotic exposure. We supplied the probiotic bacterial strain Lactobacillus rhamnosus IMC 501 to clownfish larvae from the first day posthatch simultaneously by live prey and with addition to rearing water (group 2) and exclusively by live prey (group 3). We observed twofold higher body weight in both clownfish larvae and juveniles when probiotics were supplied via live prey and added to the rearing water. In addition, development was accelerated with metamorphosis occurring 3 days earlier in fingerlings treated with probiotic. Alteration in molecular biomarkers supported the faster growth observation. There was significantly increased gene expression of factors involved in growth and development (insulin-like growth factors I and II, myostatin, peroxisome proliferator-activated receptors alpha and beta, vitamin D receptor alpha, and retinoic acid receptor gamma) when probiotics were delivered via live prey and added to the rearing water. Moreover, probiotic treatment lessened the severity of the general stress response as exhibited by lower levels of glucocorticoid receptor and 70-kDa heat shock protein gene expression. Furthermore, an improvement of skeletal head development was observed, with a 10-20% reduction in deformities for juveniles treated with probiotic. All data suggest a potent effect on development resulting from the administration of lactic acid bacteria to larval clownfish, and this study provides a preliminary molecular entry path into the investigation of mechanisms responsible for probiotic enhancement in fish development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call