Abstract

The effect of feeding increasing levels of oleic and linoleic acid both independently and together, with or without monensin, on milk fat depression was evaluated. Fifty-six Holstein cows were blocked by parity and then were divided by milk production into 2 groups (high or low) of 14 cows each within each parity block. A cow pair of 1 high and 1 low production cow within each parity block was fed in a single electronic feeding gate. Gates (n=28) were considered the experimental unit and were assigned to monensin (17.5g/t of dry matter) or control as the main plot (n=14 each). The 7 cow pairs in each of the fixed effect groups were further assigned to a sequence of fat blend diets as split plot. Seven fat blend treatments in the split plot 7×7 Latin square were no added fat (no fat) and diets with increasing levels of oleic or linoleic acid: low C18:1+low C18:2 (LOLL); low C18:1+medium C18:2 (LOML); low C18:1+high C18:2 (LOHL); medium C18:1+low C18:2 (MOLL); medium C18:1+medium C18:2 (MOML); and high C18:1+low C18:2 (HOLL). Monensin feeding did not affect milk yield or concentration and yield of milk fat. Feeding monensin decreased the proportion of C <16, increased the proportion of total C18, increased the proportion and yield of trans-10 C18:1, and increased the proportion of trans-10,cis-12 conjugated linoleic acid in milk fatty acids (FA). As dietary C18:1 or C18:2 increased beyond the concentration present in LOLL, milk fat concentration, milk fat yield, and proportion and yield of milk C <16 all decreased, and the proportion and yield of milk trans-10 C18:1 increased. A quadratic effect on milk fat concentration and yield was noticed for C18:2 feeding, but not for C18:1 feeding. When dietary contents of total FA and FA other than C18:1 and C18:2 were similar, C18:2-rich diets decreased milk fat concentration and yield compared with C18:1-rich diets (LOML vs. MOLL, and LOHL vs. HOLL), indicating that C18:2 is more potent than C18:1 for depressing milk fat. Increasing dietary FA content from no fat to LOLL, which increased primarily C18:1 and C18:2 with small increases in C18:0 and C16:0, decreased the secretion of C <16 but increased total C18 secretion in milk. This suggests that biohydrogenation intermediates act to decrease mammary FA synthesis at low levels of added C18:1 and C18:2. No significant monensin × fat interactions were detected for the milk composition parameters analyzed; however, a monensin × fat interaction was found for milk fat trans-10 C18:1 proportion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call