Abstract

This study aimed to investigate the effect of dietary dihydromyricetin (DHM) supplementation on lipid metabolism, antioxidant capacity and muscle fiber type transformation. Twenty-four male Kunming mice were randomly allotted to either control (basal diet) or DHM diets (supplemented with 300 mg/kg DHM). Our data showed that DHM administration decreased the triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) contents, and increased the catalase (CAT), total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) activities in serum. In the liver, DHM decreased the TG and malondialdehyde (MDA) levels and increased the T-SOD and GSH-Px activities. For the tibialis anterior (TA) muscle, DHM increased the total antioxidant capacity (T-AOC) level and T-SOD activities. Western blotting and real-time quantitative PCR analysis showed that DHM increased the protein and mRNA levels of MyHC I and MyHC IIa and decreased the protein and mRNA levels of MyHC IIb in TA muscle, which may be achieved by activating the AMP-activated protein kinase (AMPK) signal. The mRNA levels of several regulatory factors related to mitochondrial function were up-regulated by DHM. In conclusion, dietary 300 mg/kg DHM supplementation improved lipid metabolism and antioxidant capacity and promoted the transformation of muscle fiber type from glycolysis to oxidation in mice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.