Abstract

Conjugated linoleic acid (CLA) is a chemoprotective fatty acid that inhibits phorbol ester-induced skin tumor promotion in mice. The goal of the present study was to determine potential chemoprotective mechanisms through which CLA may be acting. Mice were fed diets containing 0.0%, 0.5%, 1.0%, or 1.5% CLA (by wt) for six weeks. The epidermis was evaluated for fatty acid composition, vascular permeability, prostaglandin E2; (PGE2) production, hyperplasia, ornithine decarboxylase activity, and c-myc mRNA accumulation. Fatty acid analysis of mouse epidermis demonstrated a dose-dependent increase of CLA incorporation into phospholipids and neutral lipids. In mice topically treated with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), dietary CLA (1.5%) significantly (p < 0.05) reduced PGE2; synthesis (2-fold). Additionally, CLA lowered accumulation of c-myc mRNA, a gene commonly associated with regulating cell cycle components involved in cellular proliferation, although this trend was not significant. Vascular permeability was unaffected by dietary CLA. These data suggest that dietary CLA modulates TPA-induced tumor promotion through a mechanism involving PGE2 production; however, dietary CLA had a moderate effect on c-myc mRNA levels and little effect on TPA-induced hyperplasia and ornithine decarboxylase activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.