Abstract

Simple SummaryHeat stress (HS) induces endoplasmic reticulum (ER) stress and disrupts the ER and cellular homeostasis. A recent study showed that ER stress was induced in broiler chickens under severe and acute HS; however, it was unclear how the alleviation of ER stress affects the physiological state of broiler chickens. Therefore, this study aimed to investigate the ameliorative effects of an ER stress alleviator, 4-phenylbutyric acid (4-PBA), which is a chemical chaperone that reduces ER stress, on the body temperature response, energy metabolic state, and cellular ER stress in HS-exposed birds. 4-PBA supplementation did not negatively affect the growth rate. In addition, 4-PBA suppressed the HS-induced ER stress response in skeletal muscle. Surprisingly, 4-PBA significantly decreased body temperature elevation in HS birds. The present study showed that the ER stress, alleviated by 4-PBA, might contribute to the induction of heat tolerance in broiler chickens.Hot, humid weather causes heat stress (HS) in broiler chickens, which can lead to high mortality. A recent study found that HS causes endoplasmic reticulum (ER) stress. However, the possible involvement of ER stress in HS-induced physiological alterations in broiler chickens is unclear. This study aimed to evaluate the effect of the dietary supplementation of 4-phenylbutyric acid (4-PBA), an alleviator of ER stress, in acute HS-exposed young broiler chickens. Twenty-eight 14-day-old male broiler chickens (ROSS 308) were divided into two groups and fed either a control diet or a diet containing 4-PBA (5.25 g per kg of diet feed) for 10 days. At 24 days old, each group of chickens was kept in thermoneutral (24 ± 0.5 °C) or acute HS (36 ± 0.5 °C) conditions for 2 h. The results showed that thermoneutral birds supplemented with 4-PBA exhibited no negative effects in terms of broiler body weight gain and tissue weight compared to non-supplemental birds. HS increased body temperature in both the control and 4-PBA groups, but the elevation was significantly lower in the 4-PBA group than in the control group. The plasma non-esterified fatty acid concentration was significantly increased by HS treatment in non-supplemental groups, while the increase was partially attenuated in the 4-PBA group. Moreover, 4-PBA prevented HS-induced gene elevation of the ER stress markers GRP78 and GRP94 in the skeletal muscle. These findings suggest that the 4-PBA effect may be specific to the skeletal muscle in HS-exposed birds and that 4-PBA supplementation attenuated HS-induced muscle ER stress, which could be associated with a supplementation of the body temperature elevation and lipolysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call