Abstract

Orally administered caffeine and dextromethorphan (DM) were used as pharmacologic probes to determine the effect of infant diet on acquisition of cytochrome P-450 (CYP) enzyme activity during the first 6 mo of life. The caffeine elimination rate constant (ke) was determined from serum, and concentrations of caffeine, DM, and their respective metabolites were measured in urine by high-performance liquid chromatography (HPLC). Caffeine ke was low at 2 wk and displayed a significant positive linear correlation with age (p < 0.001); increasing faster in formula-fed than in breast-fed infants (p < 0.001). This occurred concomitantly with a significant increase in urinary 1,7-dimethylxanthine (17X) and 1-methylxanthine (1X) (p < 0.001), suggesting faster acquisition of CYP1A2 activity in formula-fed infants. The urinary molar ratio of (17X + 1X)/caffeine and age strongly predicted caffeine ke (r2 = 0.65; p < 0.001) irrespective of feeding type. CYP3A4 activity, assessed as the molar ratio of 3-hydroxymorphinan/dextrorphan showed a similar marked increase with postnatal age (p < 0.001) that was also greater in formula-fed than in breast-fed infants. Formula feeding appears to accelerate maturation of caffeine and DM metabolism by increasing the activity of CYP1A2 and CYP3A4, respectively. Dietary modification of CYP activity may modulate drug biotransformation and thus alter systemic exposure to xenobiotics from a very early age.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.