Abstract

Developing organic photovoltaic materials systems requires a detailed understanding of the heterojunction interface, as it is the foundation for photovoltaic device performance. The bilayer fullerene/acene system is one of the most studied models for testing our understanding of this interface. We demonstrate that the fullerene and acene molecules chemically react at the heterojunction interface, creating a partial monolayer of a Diels-Alder cycloadduct species. Furthermore, we show that the reaction occurs during standard deposition conditions and that thermal annealing increases the concentration of the cycloadduct. The cycloaddition reaction reduces the number of sites available at the interface for charge transfer exciton recombination and decreases the charge transfer state reorganization energy, increasing the open circuit voltage. The submonolayer quantity of the cycloadduct renders it difficult to identify with conventional characterization techniques; we use atom probe tomography to overcome this limitation while also measuring the spatial distribution of each chemical species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.