Abstract

The impact of the inlet velocity profile at the die exit on the film dynamics within the air-gap region was investigated using numerical simulations for both Newtonian and viscoelastic Phan-Thien and Tanner (PTT) fluids in isothermal two-dimensional (2-D) film casting processes. In an industrial context, intentional adjustments were made to reduce the inlet velocities at the edge of the casting die, effectively mitigating the edge-beads characterized by a higher edge thickness than the center thickness of the final films. By varying the inlet velocity conditions with decreasing edge velocities, the steady film dynamics were correlated with the onsets of draw resonance instability and frequency responses to a disturbance, which were determined using the transfer function data obtained under tension-controlled conditions. The results revealed that decreasing the inlet velocity at the edge improved not only the formation of films but also the process stability for both Newtonian and viscoelastic fluids. In addition, the sensitivity or frequency response to a disturbance was effectively reduced by decreasing the inlet velocity at the edge. This observed impact of the inlet velocity was closely related to the increased tension levels at take-up and a greater portion of the neck-like deformation type in the air-gap region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.