Abstract

Abstract Microscale holes were punched at cryogenic conditions in polycaprolactone (PCL) membranes to create synthetic three-dimensional (3D) tissue scaffolds through multilayer stacking of two-dimensional (2D) porous membranes. Punching forces were experimentally measured, and finite element modeling of the punching process was validated by comparing punching force results. Holes of nominal diameter of 200 μm were punched in PCL films of two different thicknesses: 40 μm and 70 μm. Die clearances used for holes in 40 μm thick films were 15.0%, 30.0%, and 45.0%. Die clearances used for holes in 70 μm films were 8.6%, 17.1%, and 25.7%. All holes were punched while the PCL film was in thermal equilibrium with a bath of boiling liquid nitrogen. Punching forces were analyzed to study the effect of die clearance and film thickness. A 3D finite element simulation of the punching process was done using deform 3d software. Cryogenic material properties of PCL used in the simulation were determined experimentally. It was concluded that finite element simulation for the cryogenic micropunching process can be used to predict peak punching forces with reasonable accuracy, which is a key factor to be considered while designing the punching dies. The finite element simulations did not predict an optimal die clearance to minimize peak punching force. However, the measured peak punching forces for 70 μm thick film seem to favor the smallest die clearance to minimize peak punching force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.