Abstract

PurposeDuring service period, due to the overload or other non-load factors, diagonal cracks of the pre-stressed concrete beam are seriously affecting the safety of the bridge structure. The purpose of this paper is to quickly realize the shear bearing capacity and shear stiffness through maximum width of the diagonal cracks and make correct judgments.Design/methodology/approachThrough the shear failure test of four test beams, collecting data of diagonal cracks and shear stiffness loss value. According to the deformation curve of the shear stiffness, and combined with the calculation formula of the maximum width of diagonal cracks, the formula for calculating the effective shear stiffness based on the maximum width of diagonal cracks is deduced, then the results are verified by test data. Data regression method is used to establish the effective shear stiffness loss ratio calculation formula, the maximum width of diagonal cracks used as a variable factor, and the accuracy of this formula is verified by comparing the shear failure test results of pre-stressed hollow plates.FindingsWith the increase in width of the diagonal crack, the loss rate of shear stiffness of the concrete beams is initially fast and then becomes slow. The calculation formulae for shear stiffness based on the maximum width of the diagonal cracks were deduced, and the feasibility and accuracy of the formulae were verified by analysis and calculation of shear test data.Originality/valueA method for quickly determine the shear stiffness loss of structures by using maximum width of the diagonal cracks is established, and using this method, engineers can quickly determine effective shear stiffness loss ratio, without complex calculations. So this method not only ensures the safety of human life, but also saves money.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call