Abstract

The flotation separation and mechanism of dextrin on chalcopyrite and arsenopyrite surface were investigated using micro-flotation tests, zeta potential measurements, infrared spectroscopy, contact angle measurement and surface adsorption experiments. The micro-flotation test showed that dextrin had obvious inhibitory effect on arsenopyrite flotation, but had no inhibitory effect on chalcopyrite flotation. After treating the surface of arsenopyrite with dextrin, the infrared spectra showed that new characteristic peaks, indicating that chemical adsorption and significant interaction between dextrin and arsenopyrite particles. Zeta potential measurements, contact angle measurement and surface adsorption experiments showed that the selective adsorption of dextrin added a large number of hydrophilic groups to the surface of arsenopyrite, but had little effect on chalcopyrite. In addition, the macromolecular chain structure of dextrin may hinder the attachment of collector molecules to arsenopyrite. The combined effect of these two aspects makes the arsenopyrite treated with dextrin lose its hydrophobicity and enables the separation of chalcopyrite and arsenopyrite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call