Abstract

Insulin-degrading enzyme (IDE) has been shown to enhance the binding of androgen and glucocorticoid receptors to DNA in the nuclear compartment. Glucocorticoids cause hyperglycaemia, peripheral resistance to insulin and compensatory hyperinsulinaemia. The aim of the present study was to investigate the effect of dexamethasone (D), testosterone (T) and dexamethasone plus testosterone (D + T) on the regulation of IDE and on the remodelling of rat ventral prostate after castration (C). Castration led to a marked reduction in prostate weight (PW). Body weight was significantly decreased in the castrated animals treated with dexamethasone, and the relative PW was 2.6-fold (±0.2) higher in the D group, 2.8-fold (±0.3) higher in the T group and 6.6-fold (±0.6) higher in the D + T group in comparison with the castrated rats. Ultrastructural alterations in the ventral prostate in response to androgen deprivation were restored after testosterone and dexamethasone plus testosterone treatments and partially restored with dexamethasone alone. The nuclear IDE protein level indicated a 4.3-fold (±0.4) increase in castrated rats treated with D + T when compared with castration alone. Whole-cell IDE protein levels increased approximately 1.5-fold (±0.1), 1.5-fold (±0.1) and 2.9-fold (±0.2) in the D, T and D + T groups, respectively, when compared with castration alone. In conclusion, the present study reports that dexamethasone-induced hyperinsulinaemic condition plus exogenous testosterone treatment leads to synergistic effects of insulin and testosterone in the prostatic growth and in the amount of IDE in the nucleus and whole epithelial cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.