Abstract

The present work investigated the effect of destabilization time on the mechanical properties and microstructure evolution of high chromium cast iron, and scanning electron microscopy and electron probe microanalysis techniques were employed. The results show that the hardness of hypoeutectic high chromium cast iron is related to the size and volume fraction of secondary carbides precipitated from the matrix. The hardness of the alloy continues to rise due to the continuous increase of the volume fraction of the secondary carbide at the initial stage of destabilization. The alloy reaches its peak hardness value at 950 °C and 1000 °C for 1 hour holding time. The solid solubility of carbon and alloying elements in the matrix increases as the holding time extends, resulting in a large number of carbides redissolved into the matrix, making the hardness of the alloy decrease; the hardness of the alloy at 14 h is less than that at 10 min. Under 1050 °C, the size and density of the secondary carbide increase significantly; extending the holding time will lead to the continuous reduction of the carbide rod that provides strength, thus, the hardness curve shows a downward trend.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.