Abstract

The response of two incompressible and immiscible liquids of comparable densities at different depth ratios in a rectangular container subject to parametric sinusoidal forcing, similar to Faraday waves, has been considered in the present study. The effect of various depth ratios on the instability threshold and the flow field are investigated for (0, 2) and (0, 4) modes. Numerical simulation has been performed using OpenFOAM to solve Navier-Stokes equations. A source term is added in the interFoam module of OpenFOAM to take the effect of the oscillating container without using any dynamic mesh function. The threshold amplitude and wavenumbers are validated following the linear Floquet analysis of Kumar and Tuckerman (1994 J. Fluid Mech. 279 49–68). The Floquet analysis showed a substantial shift in natural frequency (reduction) and an increase in threshold amplitude when the interface is in close proximity to the wall. The response amplitude follows a square law with the forcing amplitude for all the depth ratios considered in the present study. The wave amplitude response above the threshold curve is found to be an exponential function of liquid depths and forcing parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call